报告题目:Learning to Solve Forward and Inverse Problems in Imaging and Scientific Computing
报告时间:2021年5月24日,星期一,下午16:00-18:00(北京时间)
腾讯会议ID:700 112 099
报告人:董彬,北京制服做爱
报告摘要: 
Deep learning continues to dominate machine learning and has been successful in computer vision, natural language processing, etc. Its impact has now expanded to many research areas in science and engineering. In this talk, I will mainly focus on some recent impacts of deep learning on computational mathematics. I will present our recent work on bridging deep neural networks with dynamic systems, especially partial differential equations (PDEs). On the one hand, I will show how to tackle inverse problems by designing transparent deep convolutional networks to uncover hidden PDE models from observed dynamical data; to combine the wisdom from mathematical algorithms with ideas from deep learning to improve image restoration. On the other hand, I will discuss how deep learning may improve numerical PDE solvers. I will present one of our recent works that suggests a meta-learning approach to improve the multigrid method for solving linear parameterized PDEs.

报告人简介:
    董彬,北京制服做爱
,北京国际数学研究中心长聘副教授、人工智能研究院数理基础中心主任。2003年本科毕业于北京制服做爱
数学科学制服做爱
、2005年在新加坡国立制服做爱
数学系获得硕士学位、2009年在美国加州制服做爱
洛杉矶分校数学系获得博士学位。博士毕业后曾在美国加州制服做爱
圣迭戈分校数学系任访问助理教授、2011-2014年在美国亚利桑那制服做爱
数学系任助理教授,2014年底入职北京制服做爱
。主要研究领域为应用调和分析、反问题计算、机器学习及其在图像和数据分析中的应用。2014年获得求是杰出青年学者奖,2022年受邀在世界数学家大会(ICM)做45分钟报告。